Browse by Editorial Category
Browse by Edition Date

May 2015

Skip Navigation Links.
Expand Applying TechnologyApplying Technology
Expand Automotive-Motorsports Mfg TechAutomotive-Motorsports Mfg Tech
Expand Cutting Tools and AccessoriesCutting Tools and Accessories
Expand EASTEC Product PreviewEASTEC Product Preview
Expand Current NewsCurrent News
Collapse Heat Treating-CryogenicsHeat Treating-Cryogenics
Expand Literature-Web TutorialsLiterature-Web Tutorials
Expand Mold MakingMold Making

show all editions →

Click here to watch Tutorial Videos >

Tool Steel Brought to Cryogenic Stillness



CryoPlus, Inc offers cryogenic services for the woodworking, logging, metalforming, stamping, tool & die, shearing, slitting, welding, punching, musical, shooting and racing industries.

Cryogenic processing, the deep chilling of tool steel so that the molecular structure of the metal is brought to "cryogenic stillness" in order to improve wear characteristics, is not a new technology. In the past toolmakers would bury components in snow banks for weeks or even months to improve the wear resistance. Castings were left outside in the cold for months or years to age and stabilize. Today's dry process is computer controlled, using a prescribed schedule and maintained at -300 °F for a particular time before slowly returning the parts to room temperature. Prior to the deep cryogenic step, many tool steels require a preconditioning step consisting of a short temper. After being subjected to the deep freeze, the materials must be tempered to about +300 °F. This temperature varies for different materials, and the processing time varies for different material cross sections.

"Cryogenic processing can improve performance and increase the life of metalcutting tools, blades, punches, dies, slitters, audio cables, gun barrels, golf club heads, engine components, shears and knives, with cryogenic processing at -300 °F. Cryo processing increases abrasive wear resistance, raises the tensile strength and decreases brittleness with only one permanent treatment. It creates a denser molecular structure and closes the grains structure, resulting in a larger contact surface area that reduces friction, heat and wear. Cryogenic treatment changes the entire structure, not just the surface. Subsequent refinishing or regrinding operations do not affect the permanent improvements of the processing," said a company spokesperson.

"Today's limited acceptance and use of cryogenic treatment is basically attributed to a lack of understanding of the technology. Changes to the material micro structure are not visible with a standard laboratory metallograph or any other standard mechanical testing. Material hardness remains about the same," said the spokesperson.

According to the company, when the cryo treated tool does wear, the degree of wear reportedly is less severe, slower and more uniform. Therefore, less material must be removed to re-sharpen it. Customers have reported a material removal rate of less than half the normal material removed in re-sharpening.

For more information contact:

Kathi Bond, Owner

CryoPlus, Inc.

2429 North Millborne Rd

Wooster, OH 44691

330-683-3375

Kathi@cryoplus.com

www.cryoplus.com

< back